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Abstract

Among the several means by which heterogeneity can be modeled, Levins’ (1969) meta-

population approach preserves the most analytical tractability, a virtue to the extent that generality 

is desirable. When model populations are stratified, contacts among their respective sub-

populations must be described. Using a simple meta-population model, Feng et al. (2015) showed 

that mixing among sub-populations, as well as heterogeneity in characteristics affecting sub-

population reproduction numbers, must be considered when evaluating public health interventions 

to prevent or control infectious disease outbreaks. They employed the convex combination of 

preferential within- and proportional among-group contacts first described by Nold (1980) and 

subsequently generalized by Jacquez et al. (1988). As the utility of meta-population modeling 

depends on more realistic mixing functions, the authors added preferential contacts between 

parents and children and among co-workers (Glasser et al. 2012). Here they further generalize this 

function by including preferential contacts between grandparents and grandchildren, but omit 

workplace contacts. They also describe a general multi-level mixing scheme, provide three two-

level examples, and apply two of them. In their first application, the authors describe age- and 

gender-specific patterns in face-to-face conversations (Mossong et al. 2008), proxies for contacts 

by which respiratory pathogens might be transmitted, that are consistent with everyday experience. 

This suggests that meta-population models with inter-generational mixing could be employed to 

evaluate prolonged school-closures, a proposed pandemic mitigation measure that could expose 

grandparents, and other elderly surrogate caregivers for working parents, to infectious children. In 

their second application, the authors use a meta-population SEIR model stratified by 7 age groups 

and 50 states plus the District of Columbia, to compare actual with optimal vaccination during the 

2009–10 influenza pandemic in the United States. They also show that vaccination efforts could 

have been adjusted month-to-month during the fall of 2009 to ensure maximum impact. Such 

applications inspire confidence in the reliability of meta-population modeling in support of public 

health policymaking.
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1. Introduction

Agent-based, network and population models each have features that, for particular 

applications, make one the obvious choice. For others, identifying the best approach involves 

weighing their respective strengths and weaknesses. While each can incorporate structural 

heterogeneity, agent-based and meta-population modeling sacrifice and preserve, 

respectively, the most analytical tractability. As analyses invariably increase understanding, 

we seek to augment the usefulness of systems of weakly coupled large sub-populations, or 

meta-populations (Levins 1969), in modeling the spread of pathogens, arguably the most 

important of several challenges that Ball et al. (2015) describe.

In consolidating and extending earlier contributions to our understanding of the impact of 

heterogeneity (in characteristics affecting sub-population reproduction numbers) and non-

random mixing, Feng et al. (2015) used a convex combination of preferential within- and 

proportional among-group contacts (Jacquez et al. 1988). In that mixing function, the 

fraction of within-group contacts and their complements correspond to Ball et al.’s (2015) 

coupling strength, which determines location on a continuum whose limiting meta-

populations behave as one or as multiple independent sub-populations. The simplicity of this 

function facilitates theoretical studies, but it is too simple for most applications.

Accordingly, we generalized the function of Jacquez et al. (1988) by including preferential 

contacts between parents and children and among co-workers as well as contemporaries 

(Glasser et al. 2012). Here we include grandparents and grandchildren, but omit co-workers. 

Together with observations from a study of face-to-face conversations, a proxy for contacts 

by which the pathogens causing respiratory diseases might be transmitted (Mossong et al. 

2008), this new function permits us to describe mixing patterns within and between genders 

by age. Motivated by the consistency of results with everyday human experience, we 

develop a formal multi-level mixing scheme.

We present several two-level examples and show that modeling influenza by age and gender 

or location could inform pandemic mitigation efforts. Our first application aims to facilitate 

reevaluating the impact of prolonged school closures, which could increase mortality among 

grandparents and other elderly surrogates for working parents, and second to assist in 

optimally allocating available vaccine among groups (Feng et al. 2015), a recurring theme 

with respect to influenza. As public health resources invariably are limited, other potential 

applications of our approach abound.

2. Methods

Mixing is inconsequential only in homogeneous populations. Feng et al. (2015) show that 

heterogeneity in factors affecting sub-population reproduction numbers increases the meta-

population reproduction number even if mixing is random, and that non-random mixing 
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increases it further, especially if heterogeneous. Accordingly, meta-population models must 

specify the manner in which sub-population members mix (i.e., proportionally or 

preferentially, and if the latter, how).

2.1 Theory

Busenberg and Castillo-Chavez (1991) define cij as proportions of contacts members of 

group i have with group j, given that i has contacts. Their criteria that mixing functions 

should meet are:

1.

2.

3.

where the Ni are group sizes and ai are average per capita contact rates of groups i = 1, …, k, 

called activities. Formulae derivable from these conditions follow.

2.1.1 A Simple Function—If a proportion εi of i-group contacts is reserved for others in 

group i, called preference, and the complement (1–εi) is distributed among all groups, 

including i, via the proportional mixing formula,  then the fractions of their 

contacts that members of group i have with members of groups j are

where δij is the Kronecker delta (i.e., δij = 1 if i = j and δij = 0 if i ≠ j). Jacquez and 

colleagues (1988) obtained this expression by allowing the fraction of within-group contacts, 

ε, to vary among groups in Nold’s (1980) preferred mixing function.

2.1.2 One-Level Mixing—When groups are age classes, Glasser et al. (2012) generalized 

this function to contacts between parents and children and among co-workers as well as 

contemporaries. Here we add a second generation (i.e., grandchildren and grandparents, 

another set of sub- and super-diagonals). For simplicity, we omit contacts among co-workers 

and assume that generation time, G (average age of women at the birth of their daughters) 

and longevity, L (average expectation of life at birth or age at death) are constant. Then the 

fractions of their contacts that members of group i have with members of group j may be 

defined as
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where the εsi are fractions of contacts reserved for the sth sub-population, s = 1, …, 5 

(contemporaries, parents, children, grandparents, and grandchildren), and ai and Ni are the 

per capita contact rates and sizes of the ith age group, i = 1, …, n. Because people whose 

ages equal or exceed G but are less than 2G may have children, but not grandchildren; 

people whose ages equal or exceed 2G can have both children and grandchildren; people 

whose ages are less than or equal to L–2G may have parents and grandparents; people 

whose ages are less than or equal to L–G may have parents, but not grandparents; and those 

whose ages are between 2G and L–2G may have children, grandchildren, parents and 

grandparents; we define ϕij as

If age groups are 0–4, 5–9, … and the generation time is 25 years, by i > G we mean age 

greater than class 5. Thus, 

To 

satisfy Busenberg’s and Castillo-Chavez’ (1991) third condition (that contacts must 

balance), the non-zero elements of and of  must be related. 

Again, if age groups are 0–4, 5–9, … and the generation time is 25 years, ai × Ni × ε4i = aj × 

Nj × ε5j, for i = 11, 12, …, n and j = i –2G. This ensures that ai × Ni × cij = aj × Nj × cji for j 

= i –2G. Note also that 

2.1.3 Multiple-Level Mixing—Some applications require multiple strata. Beginning with 

two, consider m sub-populations (e.g., locations or genders) and n classes (e.g., age or 

activity groups). Let li denote the ith location (l for location) and aj denote the jth age group 

(a for age), 1 ≤ i ≤ m and 1 ≤ j ≤ n. We use this compound notation whenever indices might 

otherwise be confused.

Let  denote the activity, or average per capita contact rate, of individuals at location li 
and age aj and  denote the number of people at location li of age aj. Then the probability 

of contact between persons in location li, age aj and location lp, age aq may be described by a 

matrix with entries

where
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In these expressions, represents preference for one’s own age/location group, δrs is the 

Kronecker delta function, taking values of 1 (if r = s) or 0 (if r ≠ s), and is random 

mixing (i.e., proportional to contacts, ). For some applications, however, mixing 

among ages and locations (or other strata) are independent (e.g., members of an age class 

may contact others of the same age preferentially regardless of their location, gender or any 

other discrete characteristic).

Letting  and  represent preferences for one’s own location and age class, 

respectively, matrix entries become

where

In this expression for  the terms in square brackets represent age-preferential mixing 

in one’s own and other locations, respectively, and represent 

proportional mixing with respect to age, location, and both.

Checking to ensure that  for any given i and j, we find that

We can also verify that the constraint
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is satisfied:

and

Once we have an expression for that is suitable for our application, we can formulate 

the force or hazard rate of infection per susceptible person as

Two-Level Examples.

2.2.3.1 Age and Location: Proximity must affect inter-personal contacts in spatial meta-

populations. Glasser et al. (2016) assumed that contacts among sub-populations at different 

locations were a negative exponential function of inter-location distances. Combining such 

spatial with age-dependent mixing, we define

In these expressions, b is the rate at which contacts diminish with distance (which may 

depend on age, but if so, must be averaged to satisfy the balance condition), 

 is the distance between locations i and p, corresponds to proportional mixing (with 

respect to age) of persons in group q at location p, denotes the fraction of contacts that 

Feng et al. Page 6

Math Biosci. Author manuscript; available in PMC 2017 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



individuals aged q (at any location) reserve for others in the same group (preference), and 

 represents the fraction of their contacts that individuals aged j have with individuals 

aged aq at location lp. Because contacts must balance, 

 the superscript can be dropped only if age 

group sizes are the same at all locations, i.e., 

2.1.3.2 Immigrants and Natives: Consider the case of immigrant (l1=1) and native 

populations (l2=2), a distinction that may matter for models designed to evaluate 

interventions to mitigate diseases whose prevalence differs at home and abroad (e.g., 

tuberculosis). The preference for population 1 of individuals aged aj in population 1 is 

similarly, the preference for population 2 of individuals in population 2 is .

If there is no age preference the probability that individuals aged aj in population 1 

contact persons aged aq in population 1 (note that ) is

And the probability that individuals aged aj in population 1 contact persons aged aq in 

population 2 (note that ) is

2.1.3.3 Sexual Contacts: Another case with m = 2 is age- or activity-stratified mixing 

between females (l1=1) and males (l2=2), most of whose contacts are reserved for members 

of the other gender. (Replacing age with sexual activity, the groups might comprise sex 

workers and their clients.)

If contacts are entirely heterosexual,  Thus, 

F is irrelevant. And, if there are no contacts within l1 and l2, the denominator in G should not 

be a sum, whereupon G = 1. Similarly, the sum over r in the denominator of H should be 

omitted. That is,

whereupon
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And the rate of infection for a female aged j is

2.2 Applications

In this section, we use two-level mixing functions, age with gender or location, in pandemic 

influenza applications, the first designed to facilitate deducing the impact of a proposed 

mitigation measure, prolonged school closures, and second to assist in optimally allocating 

available vaccine among groups.

2.2.1 Prolonged School Closures—In the best studies to date, modelers have assumed 

that mixing patterns during prolonged school closures would resemble those during 

weekends or school holidays. In many young families, however, both parents work, but not 

usually on weekends. And working parents plan activities for their children during holidays 

(e.g., sports and summer camps). Their options for unanticipated school closures are to miss 

work or – depending on their children’s ages – to leave them at home alone or arrange for ad 
hoc child care. The first two options become less attractive the longer that schools are 

closed, leading to communal child care, mitigating the impact of school closures, or 

involving grandparents, potentially increasing morbidity if not mortality among the elderly. 

With our 5-diagonal mixing function, the net impact of prolonged school closures could be 

deduced more realistically than it has been heretofore.

Accordingly, we fit our function to observations by 5-year age class from the PolyMod study 

(Mossong et al. 2008) stratified by gender. If  females (l1=1) in age group j reported 

face-to-face conversations with females in age group q, for example, one would 

calculate their average per capita contact rates, and 

 fractions of their contacts that were with females in age group 

q. Female contacts with males (l2=2) would be calculated similarly, as would male contacts 

with members of each gender.

2.2.1.1. Parameter estimates: Delta formulations are convenient mathematically, but 

probability density functions are more realistic (Hethcote 1996). Accordingly, when 

estimating parameters, we determine the ages of persons with whom contacts are 

preferential by fitting Gaussian kernels sampled at discrete points. That is, we replace the 

deltas in our 5-diagonal mixing function with
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where  allow persons aged ai and those 

aged aj, aj ±G, or aj±2G to be contemporaries even if ai ≠ aj, parents/children even if |ai − aj| ≠ 

G, and grandparents/grandchildren even if |ai − aj| ≠ 2G. Given this functional form, the 

variances determine if persons aged aj are contemporaries, parents/children, or grandparents/

grandchildren of those aged ai.

We used Mathematica’s NMinimize function to estimate the generation time, G, the reserved 

fractions of contacts, εsga, and variances of the Gaussian kernels, σsga, for the s = 1, …, 5 

sub-populations, g = 1, 2 genders, and a = 1, …, n age groups, given the observed 

 by minimizing the sum of squared differences between modeled and 

observed 

2.2.2 Optimal Immunization—Insofar as different endeavors require distinct spaces, 

which bring people into close proximity, time-use studies complement face-to-face 

conversations as proxies for contacts by which respiratory diseases might be transmitted. A 

synthesis of US studies (Zagheni et al. 2008), together with the approach by which Del Valle 

et al. (2007) convert periods together into contacts, permits us to formulate the simplest 

transmission model that is capable of informing vaccination policy in age- and location-

stratified meta-populations. Using the gradient (partial derivatives of the meta-population 

effective reproduction number with respect to sub-population immunities or immunization 

rates), we compare influenza vaccination in the United States from October 2009 through 

June 2010, assessed via the National 2009 H1N1 Flu Survey (NHFS), with the optimal 

trajectory for control.

For this application, we consider the m = 51 sub-populations (e.g., 50 states and District of 

Columbia) and n = 7 age groups (e.g., 0–9, 10–17, 18–34, 35–44, 45–54, 55–64, 65+ years) 

in the National 2009 H1N1 Flu Survey (NHFS). Letting li denote the ith sub-population and 

aj denote the jth age group,
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In this model, people are Susceptible, Exposed (infected, but not yet infectious), Infectious, 

or Removed (immune by virtue of infection and recovery or immunization). Immunization 

occurs at rate the product of the vaccination rate and probability of becoming immune, 

about 77% overall for monovalent H1N1 vaccine (Simpson et al. 2012), 1/α and 1/γ are the 

latent and recovery (duration of infectiousness) periods (Carrat et al. 2008), is 

susceptibility, the probability of infection on contact with an infectious person, of whom the 

fraction  effectively self-quarantine (e.g., stay home).

2.2.2.1 Effective Reproduction Number: Given that N = S + E + I + R, we can eliminate 

the R equation. Let

Then the system for the fractions (ignoring the removed class) becomes

At the disease-free equilibrium,
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Arrange the variables in the order (x, y), where

Proceeding via the method of van den Driessche and Watmough (2002), the Jacobian at E0 

(considering only the disease variables) is

where Jij are mn by mn matrices with

where Imn is the identity matrix of size m × n and

Let J = F − V, where

and note that

The next-generation matrix is
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is the effective reproduction number of the sub-population composed of age-group aj at 

location li. The ‘*’ denotes a mn by mn block matrix that does not affect the eigenvalues of 

K. The meta-population ℜ(v) is the dominant eigenvalue of K11. If 

 all rows of K11 are multiple, so the matrix has rank 1. 

Consequently, ℜ(v) is given by its trace, 

2.2.2.2 Parameter Estimates: We follow Del Valle et al. (2007) in assuming that the 

number of contacts during any period δt is Poisson with parameter σ. Thus, the probability 

of no contacts in time interval δt is exp(–σδt) and that of at least one contact is 1 − exp(–

σδt). Using the daily mean durations  of contacts between persons in age group aq with 

those in group aj from Zagheni et al. (2008), the daily numbers of contacts are 

 Writing the marginal sum,  we first note that 

people are mobile, whereupon these average over m locations, i.e., 

Second, we assume that, while people may engage in similar endeavors, they are less likely 

to do so together (i.e., to make contact) the more distant their locations. Assuming that the 

activity of an individual aged aj at location li, is determined not only by his/her age, but 

also by the distance, ease of travel, … to other locations,  whereupon 

 Thus, if are known, the can be estimated for 

q = 1, 2,…, n. Given them, we can obtain the for all age groups at all locations, from 

which we can obtain  and via formulae in two-level example 2.1.2.1, 

entitled age and location. These formulae ensure that 

Influenza vaccine coverage by age and state from October 2009 through June 2010 may be 

estimated from (http://www.cdc.gov/nchs/nis/data_files_h1n1.htm). We used the responses 
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of those interviewed during any month to estimate p, the proportion vaccinated that month, 

with the monovalent H1N1 vaccine. We divided sums of the weights of those vaccinated (the 

variable VACC_H1N1_F is missing in <1% of records) by sums of all weights in each 

stratum (state, age group). Then we performed weighted logistic regressions of these 

estimates by month. From their predicted values, we calculated monthly age- and state-

specific vaccination rates, where k and k+1 denote 

successive months. We also calculated monthly H1N1 vaccine availability from shipments to 

states from mid-October through mid-January, http://www.cdc.gov/h1n1flu/vaccination/

vaccinesupply.htm, less doses administered through the prior month (below).

After converting the daily periods that people spent with others by age from Zagheni et al. 

(2008) into contacts via the approach of Del Valle et al. (2007), we fitted an interpolating 

function to the resulting surface, averaged contacts in the n = 7 age groups of the H1N1 

coverage data (i.e., 0–9, 10–17, 18–34, 35–44, 45–54, 55–64, 65+ years), and calculated 

 Then we obtained the m = 51 (50 states plus District of Columbia) centroids from 

Mathematica’s geographic database, calculated the inter-state distances, and solved 

for the  Next, given them and the 

 And finally, we averaged 2009 and 

2010 state populations by age group from CDC Wonder (http://wonder.cdc.gov/population-

projections.html) and calculated  These data, together with 

monthly vaccination rates and vaccine shipments described above, also enabled us to 

calculate vaccine administration (by multiplying sums of products of prior monthly 

vaccination rates and state populations) and, hence, availability.

Fractions seropositive after the second wave of the H1N1 pandemic by age are available 

from Reed et al. (2012). We fitted the Gamma probability density function, 

 to those corrected for immunization (Reed et al., table 2), 

normalized so that they sum to 1. While  is an increasing function of age 

a, we define f(a) = h(a)/[1+h(a)], as the cumulative probability of infection with the 2009 

H1N1 pandemic viral subtype at age a. Thus,  and 

 Then we solved 

are the proportions seropositive, for the 

Assuming that sub-group sizes remain constant due to balanced inputs and outputs, that α = 

½, and γ = ⅓, we calculated  where  and 

finally, 
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2.2.2.3 Optimal Immunization: As Feng et al. (2015) illustrate for n = 2, the gradient 

describes the most efficient means of attaining any programmatic goal. Their approach 

involves fixing Δℜ(v), the amount by which ℜ(v) is to be reduced (assumed small or the 

prescribed reduction is assumed to be a sum of small increments), and denoting the gradient 

vector at the point (χ1c, χ2c, …, χmnc) by ∇ℜ(v) = (v1c, v2c, …, vmnc). For ease of notation, 

re-label the sub-populations with a single index k = 1, …, mn. Note that ℜ(v) is a decreasing 

function of χk, the immunization rate. Denote this function by ℜ(v)(χ1, χ2, …, χmn). In the 

following, we assume that all other parameters are fixed save the χk, and use the gradient to 

determine the optimal immunization strategy, denoted by  for reducing 

ℜ(v).

If we increase the immunization rates by (Δχ1, Δχ2, …, Δχmn) along a unit direction, 

 then  where r is a constant determining 

the magnitude of the vector (Δχ1, Δχ2, …, Δχmn). It follows that 

 so that 

where Θ is the angle between the gradient vector at (v1c, v2c, …, vmnc) and the unit length 

vector  Note that the expression  is largest when |CosΘ|=1 

(i.e., when Θ = π, because  Thus, the value of r is minimized when  is 

parallel to the gradient vector ∇ℜ(v) = (v1c, v2c, …, vmnc); that is, 

 Thus, 

 whereupon 

Therefore, the necessary increase in doses,  is smallest 

when the vector  is parallel to the gradient vector ∇ℜ(v) at the point 

The gradient can also be used to devise optimal allocation strategies for vaccines with 

limited availability, as influenza vaccine typically is early each fall. We can minimize the 

function ℜ(v)(χ1, χ2, …, χmn) for fixed total daily doses, 

where c > 0 is a constant representing the doses available and the Nk also are fixed. We solve 

 subject to  where λ is the 

Lagrange multiplier. Notice that the constraint corresponds to a “plane” with normal 

direction parallel to the vector (N1, N2, …, Nmn). As this plane is orthogonal to at the 

solution point  its intersection with the contour “surface” of ℜ(v)(χ1, χ2, 

…, χmn), to which it is tangent, is the optimal immunization program (figure A1).

3. Results

Our objectives are to develop meta-population modeling methods and to illustrate the utility 

of the analyses that this approach permits. As meta-population modeling depends on realistic 

mixing, we began by developing single-level functions with 4 and 5 types of preferential 

mixing, compared in figure 1, and a generalized multi-level scheme whose proportional 

mixing formulae are illustrated in figure 2. Subsequent figures illustrate applications of two-
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level mixing functions to influenza, an age-gender function that may facilitate reassessment 

of prolonged school closures and an age-location function with which we illustrate one 

means of determining the optimal allocation of limited vaccine.

3.1 Theoretical Results

Figures 1 compare our successive 3- and 5-diagonal generalizations of the function of 

Jacquez et al. (1988), the first to include preferential contacts with parents and children and 

among co-workers as well as contemporaries and second to include grandparents and 

grandchildren, but not co-workers. Figures 2 illustrate proportional mixing with respect to 

age, location, and both in our multi-level scheme. While symbol sizes are the same for older 

and younger ages, above and below the focal age (denoted by a larger dot in figures 2a and 

c), respectively, mixing is proportional to products of age-specific contact rates and sub-

population sizes (i.e., contacts), which generally will differ among age groups. Similarly, 

sub-population sizes generally will differ among locations (figures 2b and c).

The 5-diagonal mixing function is our latest generalization of Nold’s (1980) function, which 

Jacquez et al. (1988) modified by allowing the fraction of contacts reserved for others in 

one’s own group (termed preference) to vary among groups, and Glasser et al. (2012) 

modified by adding preferential contacts between parents and children and among co-

workers as well as contemporaries. We added preferential contacts between grandparents 

and grandchildren and, to facilitate parameter estimation, omitted contacts in the workplace. 

We believe that our multi-level generalization is the first of its kind. Besides a general 

scheme, we also provide several two-level examples, age with location or birthplace and 

gender with age or sexual activity. And we use two of these functions in our applications.

Figure 4 illustrates how the gradient may be used to determine the optimal allocation of 

limited vaccine in a hypothetical meta-population composed of two age groups at each of 

two locations. As we can only plot three dimensions, we fix the allocation to one sub-

population. In the appendix, we explain this and the elements of which figure 4 is composed, 

and provide parameter values. We perform this calculation for the m = 51 locations and n = 

7 age groups in the National 2009 H1N1 Flu Survey (NHFS) and illustrate age-specific 

results for one of these locations, the state of California, in figures 9 and 10.

3.2 Substantive Results

Figures 3a–e illustrate contacts with contemporaries, parents, children, grandparents, and 

grandchildren estimated by fitting our 5-diagonal mixing function to gender-stratified 

observations from the PolyMod study. Young and old males and females contact 

contemporaries of their own gender preferentially, but not middle-aged ones. Mothers have 

more contacts with daughters, but young fathers contact sons preferentially and older fathers 

daughters. Females of any age have more contacts with mothers than fathers, while men 

have more contacts with their mothers than fathers. Differences between genders are most 

striking in contacts between grandchildren and grandparents. Grandfathers contact 

grandsons disproportionately and vice versa. Granddaughters have more contacts with 

grandmothers, but grandmothers contact grandchildren of both genders equally. As ordinates 
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differ, preferential contacts are summed in figure 3f. Complements of these age-specific 

sums are distributed proportionately.

Figure 5 illustrates age-specific rates at which contacts decrease with distance. This 

calculation relies on contacts obtained via the method of Del Valle et al. (2007) from the 

periods together by age reported by Zagheni et al. (2008) and distances obtained from state 

centroids available in Mathematica. Rates are more or less constant until middle age, after 

which they increase, ultimately twofold. Evidently older people are much less mobile than 

younger ones.

Figures 6 illustrate age-specific forces or hazard rates of infection calculated from a Gamma 

function fitted to proportions seropositive corrected for immunization reported by Reed et al. 

(2012). Figures 7 and 8b illustrate the widely reported greater susceptibility of children than 

adults to infection with this influenza virus and their equilibrium prevalence. Figure 8a 

illustrates contributions to the reproduction number – by virtue of the magnitude and age-

distribution of their contacts – an observation that however is not limited to influenza 

(Glasser et al. 2012). Children are super-spreaders (Lloyd-Smith et al. 2005). Our serology-

based ℜ0 = 2.2 exceeds case-based ones because of asymptomatic infections (i.e., were 

case-based ℜ0 = 1.45, for example, only about ⅔ of infections would be symptomatic).

These calculations lead directly to figures 9, which illustrate monthly H1N1 vaccination 

rates for California and compare age-specific immunization rates during the fall of 2009 

with the optimal allocation of limited vaccine for reducing the effective reproduction 

number. Recall that immunization is the product of vaccination and vaccine efficacy. We 

estimated, from shipments and prior administration, that 836,900, 3,344,190, and 7,163,650 

doses were available for use in CA during October, November and December of 2009, 

respectively. In figure 10, we compare the October immunization rates to those required to 

further reduce the effective reproduction number during November, but could of course 

illustrate these calculations for any state and month.

4. Discussion

Meta-population modeling, in which heterogeneous populations are stratified into 

homogeneous sub-populations (e.g., age groups, genders, spatial strata), is one approach by 

which heterogeneity may be represented. Compared with other possible modeling 

approaches, it preserves the most analytical tractability. Meta-population models enabled 

Feng et al. (2015) to deduce the consequences of ignoring heterogeneity in factors affecting 

sub-population reproduction numbers and non-random mixing vis-à-vis efforts to prevent 

outbreaks of vaccine-preventable diseases in general and Glasser et al. (2016) to deduce the 

impact of heterogeneity due to personal-belief exemptions to vaccination.

The utility of the meta-population approach depends critically on realistic modeling of the 

means by which pathogens are transmitted among sub-populations. Accordingly, we 

generalize a function in which mixing is a convex combination of preferential and 

proportionate contacts within one and between multiple levels. We derive several two-level 

mixing examples from our multi-level scheme and, to further illustrate the analytical insights 
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of which meta-population models are capable, use two of these, age with gender and 

location, respectively, in applications to pandemic influenza.

First we derive a mixing function with which a proposed pandemic mitigation measure 

could be thoroughly evaluated. This function resembles that of Glasser et al. (2012), which 

includes preferential mixing between parents and children as well as among co-workers and 

contemporaries. However, it also includes grandparents and grandchildren, but not co-

workers (figures 1). We estimate gender-specific parameters from face-to-face conversations 

recorded during the PolyMod study. While patterns of preferential mixing by age and gender 

are interesting social phenomena, these results motivated us to develop the multi-level 

scheme whose proportionate mixing functions are illustrated in figures 2.

Age- and gender-specific patterns apparent in conversations from a composite of the eight 

European countries studied by PolyMod investigators are consistent with everyday 

experience. Preferential contacts are greater within than between genders at younger and 

older ages, with most disparities likely due to women living longer than men (e.g., younger 

and older fathers, respectively, contacting sons and daughters preferentially). Grandparents 

and grandchildren are the most striking exception. Grandmothers contact grandchildren 

equitably, but grandfathers and grandsons contact one another disproportionately (figures 3). 

These age- and gender-specific preferences suggest that our 5-diagonal function provides a 

reliable basis for investigating school-closure scenarios.

By manipulating the intensity (contact rates, a or A) and pattern of mixing (preferences, ε), 

one can easily determine analytically, via meta-population effective reproduction numbers, 

the impact of realistic changes in mixing attendant upon school closures of varying duration. 

We can deduce the impact of reducing contacts among schoolchildren by any factor. But if 

their preferential contacts became proportional, this would have much less impact than 

reducing their marginal contact rates. A ⅔ reduction in ε1,2, ε1,3, and ε1,4, for example, 

only reduces ℜE by about 1%, but a ⅔ reduction in a2, a3, and a4 reduces it by about 25%. 

Would children’s contact rates be reduced or just reallocated, and if the latter, how? Does 

this depend on children’s ages and for how long schools are closed? Social scientists may 

assist modelers in formulating realistic scenarios that interest policymakers.

Together with methods illustrated in our application to influenza vaccination, this function 

also permits investigation of whether the greater incidence of several diseases among 

members of one gender than the other is due to differential exposure or susceptibility versus 

gender-specific immune responses (Fish 2008). Antibodies to cytomegalovirus, for example, 

increase more rapidly with age among females than males. Women who are infected for the 

first time or who experience reactivations of latent virus or re-infection with new viral 

strains during pregnancy may infect their developing fetuses. Consequences of congenital 

infection include spontaneous abortions, stillbirths and neurological and sensory 

impairments. Understanding gender-specific differences in exposure or susceptibility may 

help to design strategies for deploying the vaccines currently under development most 

advantageously.
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Both applications of multi-level mixing functions described here involve pandemic 

influenza, but the second is relevant to vaccine-preventable diseases more generally. Feng et 

al. (2015) showed that the population-immunity threshold, used by health authorities 

worldwide to guide and evaluate vaccination efforts, is limited to homogeneous populations. 

They suggested the multivariate partial derivative of the meta-population effective 

reproduction number with respect to the sub-population immunities instead, as it is 

appropriate irrespective of heterogeneity or mixing regime (figure 4). Here we use this 

quantity, the gradient of multi-variable calculus, together with age- and location-specific 

mixing, to deduce the optimal allocation of limited H1N1 influenza vaccine in the United 

States during the fall of 2009.

Patterns that are consistent with everyday experience or prior reports also become apparent 

in the course of this application. Using another proxy for contact rates, periods engaged in 

similar endeavors, we discovered that the spatial range of human contacts diminishes after 

middle age (figure 5), a pattern that Read et al. (2014) also observed in southern China. 

Using US mixing data (Zagheni et al. 2008), together with proportions having serologic 

evidence of H1N1 virus infection (figure 6), we determined that children and adolescents 

were more susceptible than adults (figure 7). We also learned that they experienced more 

infections and contributed more to the basic reproduction number (figure 8), of which our 

estimate is somewhat higher than case-based ones, leading to the conclusion that about ⅓ of 

H1N1 infections were asymptomatic. While this proportion is often cited, we are not aware 

of other evidence.

Our use of the gradient to devise optimal immunization strategies is new. In some states 

(e.g., California), the allocation was nearly optimal for reducing the effective reproduction 

number (figure 9). In others, even more elderly people were vaccinated than optimal from 

this perspective. Authorities recommended vaccinating persons at risk of complications, 

including the elderly. Models can help policymakers to devise such recommendations, which 

often involve weighing tradeoffs between short- and long-term benefits. Vaccinating elderly 

people may protect them directly, for example, but vaccinating younger people – who 

contribute disproportionately to the reproduction number – arguably would protect more 

elderly ones indirectly, especially if vaccine efficacy declines with age. Using these 

methods, modelers can also fine-tune public health efforts (figure 10).

5. Conclusions

Meta-population modeling permits one to deduce the consequences of heterogeneity 

analytically. The utility of this approach depends on the functions by which contacts among 

the members of sub-populations are modeled. Intermediate results of realistic meta-

population models are consistent with everyday experience or observations, reassuring us 

about the reliability of insights derived for novel circumstances. Such models can help to 

communicate indirect effects and future benefits to people with different kinds of expertise, 

most affected by, if not involved in the making of, public health policy.
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Appendix

A detailed explanation of figure 4, a contour plot of ℜ(v) on the 3-D space (χ1, χ2, χ3), the 

constraint  and the gradient ∇ℜ(v).

The parameter values are μ = 1/(365×70), γ = 0.15, β = 0.05, A1 = 8, A2 = A4 = 10, A3 = 12, 

N1 = N2 = N3 = N4 = 500, κi = 0, c = 0.00005 N, and axis labels are χk ×10−4. For these 

values, the optimal immunization rates are , 

at which ℜ(v) = 1.47.

Figure A1. 
Separate plots of the elements of figure 4, contour surfaces (left), gradient field (middle), 

and constraint plane (right).
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Figure A2. 
Contour surfaces in 3-dimensional space for 4 sub-populations shown by slice contour 

curves in 2-dimensions (a plane) for 3 sub-populations. For a fixed value of χ2, for example, 

we can look at the contour curve on the (χ1, χ3) plane.
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Figure 1. 
Generalizations of the function of Jacquez et al. (1988), which allows fractions of contacts to 

be reserved for one’s own group and complements to be distributed proportionally among 

groups. The age-specific function on the left includes preferential contacts between parents 

and children (sub- and super-diagonals) and among co-workers (dashed box) as well as 

contemporaries (main diagonal) while that on the right includes preferential contacts with 

grandparents and grandchildren (sub-sub- and super-super-diagonals) as well as parents, 

children and contemporaries.
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Figure 2. 
The functions that describe proportional mixing with respect to one level, F (e.g., age), the 

other, G (e.g., location), and both, H, in a generalized two-level mixing scheme are 

illustrated by figures a, b, and c, respectively. By dots of the same size on horizontal lines 

above and below the large dot in figure a, we do not mean to imply that such mixing is the 

same from one age group to another. Rather, it is proportional to products of per capita 
contact rates and group sizes, in either or both of which respects groups may differ. Group 

sizes may vary among locations as well.
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Figure 3. 
Estimated age- and gender-specific contacts (εsga × Aga) from fitting our 5-diagonal function 

to gender-stratified observations from the PolyMod study. On the left and right, respectively, 

are daily contacts by females and males. The red and blue curves, respectively, are their 

female and male contacts. Thus, the blue curve on the left is female contacts with males. 

Figures a-e illustrate contacts with contemporaries, children, parents, grandchildren, and 

grandparents by age, and figure f illustrates all preferential contacts. Ordinates differ top to 

bottom and, in some cases, left to right.
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Figure 4. 
Contour plot of ℜ(v) on the 3-D space (χ1, χ2, χ3) (the curved surface), the constraint 

(the plane), and the gradient ∇ℜ(v) (the arrows). We fix 

and plot as a function of the first three variables. The 

curved surface is a contour plot of the plane is 

 and the arrows show the gradient ∇ℜ(v). The optimal 

allocation  occurs where the plane is tangent to the curved surface. The red 

arrow is the gradient ∇ℜ(v) at this point, the normal direction of the plane. The appendix 

includes parameter values and further details.
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Figure 5. 

Age-specific rates at which contacts diminish with distance,  The doubling of this 

exponent from youngest to oldest age group indicates a substantial reduction in the spatial 

range of contacts with age that may warrant consideration insofar as morbidity and mortality 

are age-dependent.
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Figure 6. 
Observed a) fractions seropositive after the H1N1 pandemic (Reed et al. 2012), less fractions 

immunized (i.e., fractions infected), fitted Gamma function (y = 1.68, z = 13.16), and 

calculated b) force or hazard rate of infection among susceptible people by age.
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Figure 7. 
Probabilities of infection on contact with an infectious person (susceptibility) by age as 

grouped in the National 2009 H1N1 Flu Survey (NHFS). The decreased susceptibility of 

older people has been attributed to their exposure to a related virus when younger.
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Figure 8. 
Eigenvectors associated with the dominant eigenvalue of the next generation matrix, 

interpretable as age-specific a) contributions to the basic reproduction number and b) 

equilibrium prevalence. Control measures targeting groups that contribute the most have the 

greatest impact.
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Figure 9. 
Calculated H1N1 immunization rates a) by age and month in California and b-d) comparison 

of the observed and optimal age-specific rates during October (given the 836,900 doses 

available), November (given the 3,344,190 doses available) and December of 2009 (given 

the 7,163,650 doses available). Rates peak from late 2009 through early 2010 and 

corresponded reasonably well to the optimal age distribution when vaccine was scarce, with 

the exceptions noted in the next figure, but diverged increasingly as more vaccine became 

available.
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Figure 10. 
Increments in California’s October 2009 immunization rates that would reduce the effective 

reproduction number during November by multiples (r = 0, 1, 5) of the gradient. The actual 

rates are denoted by the r = 0 line. The magnitude of the gradient is greatest in those age 

classes where vaccination is sub-optimal, as indicated by figure 9b.
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